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Chemically sensitive resistors have been fabricated from composites of carbon black and low volatility,
nonpolymeric, organic molecules such as propyl gallate, lauric acid, and dioctyl phthalate. Sorption of
organic vapors into the nonconductive phase of such composites produced rapid and reversible changes
in the relative differential resistance response of the sensing films. Arrays of these sensors, in which
each sensing film was comprised of carbon black and a chemically distinct nonpolymeric organic molecule
or blend of organic molecules, produced characteristic response patterns upon exposure to a series of
different organic test vapors. The use of nonpolymeric sorption phases allowed fabrication of sensors
having a high density of randomly oriented functional groups and provided excellent discrimination between
analytes. By comparison to carbon blaglolymer composite vapor sensors and sensor arrays, such sensors
provided comparable detection limits as well as enhanced clustering and enhanced resolution ability

between test analytes.

|. Introduction

array-based sensing approaches. In this architecture, each

Array-based vapor sensing has attracted significant interesS€NSOr IS not designed to respond selectively to a single
for its ability to detect and discriminate between various @nalyte, butinstead each analyte produces a distinct finger-

analyte vapors.Surface acoustic wave devices,tin oxide
sensors; ’ conducting organic polymefs1® polymer-coated
quartz crystal microbalancék,'® polymer-coated micro-
machined cantileverd, thin film capacitors® dye-impreg-
nated polymers coated onto optical fibers or be&ds,
transition metal-based dyé%?° and polymer composite
chemically sensitive resistdis?? have all been explored in

print from the array of broadly cross-reactive sensors. Pattern
recognition algorithms can then be used to obtain information
on the identity, properties, and concentration of the vapor
exposed to the sensor arréy?’

One especially attractive signal transduction mode involves
the use of chemically sensitive resistors as the sensor array
element$!~2% Such sensors are inherently low powet?
are compatible with very large-scale integration (VLSI)
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Scheme 1. Structures of Materials Used in This Study
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a All of these materials, except dioctyl phthalate, are solids at room temperature.

other insulating materials, and can be fabricated in a wide carbon black particles and an insulating organic material,
variety of form factors to optimize signal-to-noise ratios wherein the sorption phase consists of simple, monomeric,
(SNRs) and produce desired physical sensor and sensor arralpw vapor pressure organic materials. Such sorption films
configurations’? Significant attention in our laboratory has have a relatively high density of functional groups and
been devoted to the investigation of chemiresistive vapor thereby could provide very effective sorption of organic
detectors fabricated from composites of carbon black and analyte vapors. The random arrangement of the organic
insulating organic polymer&;22323435n which the carbon ~ molecules in the sorption phase should produce a high vapor
black serves as the electrically conductive phase and thepermeability and therefore lead to rapid sensor response times
organic polymeric phase absorbs the organic vapor into theand could produce highly reversible responses that show
sensor. relatively little history efforts or hysteresis in response to a

The sensitivity of sorption-based detectors depends on thewide range of organic analyte vapors. The use of nonpoly-
interactions between the analyte and the sorption maférial. meric materials opens up a wide range of sorption phases
Vapor sensors with enhanced sensitivity to analytes havinghaving desirable chemical functionality and physical proper-
specific functional groups, such as amines or carboxylic ties that are in general not readily accessible in polymeric
acids, can be obtained through fabrication of sorption materials.
materials which target functional groups of the analyte of

interest3”*8 Increasing the density of the functional groups _ ] ] _ _ o
A. Materials. The insulating materials used in fabricating the

in the sorption material could further increase the amount sensor films (Scheme 1) and the plasticizer dioctyl phthalate were
of vapor sorption and therefore produce an additional increase ims (> . plasticizer dioctyl p W
used as received from either Aldrich Chemical Co. or Acros

inthe_ sensitivity of such_ chemically resi_stive vapor Qeteptqrs. Organics Co. Reagent grade toluendhexane, tetrahydrofuran

In this work, we describe th_e properties of_ chemlreS|st|v_e (THF), ethanol, ethyl acetate, cyclohexandeptanep-octane, and

vapor sensors that are comprised of composites of conductivgsgoctane were used as received from Aldrich Chemical Co. Black

Pearls 2000 (BP 2000), a furnace carbon black material, was

(34) Doleman, B. J.; Lonergan, M. C.; Severin, E. J.; Vaid, T. P.; Lewis, donated by Cabot Co. (Billerica, MA) and was used as received.
N. S.Anal. Chem1998 70, 4177. B. Detectors.Detector substrates were fabricated by evaporating

(35) gSeé’e”n' E. J.; Doleman, B. J.; Lewis, N./al. Chem200Q 72, 300 nm of chromium and 700 nm of gold onto glass microscope

(36) Popovska-Pavlovska, F.; RakaJLPolym. Sci., Part B: Polym. Phys.  Slides using 0.2 cm wide drafting tape as a mask. After evaporation,
2004 42, 267. the mask was removed and the glass slides were cut into 10 cm
(37) Tillman, E. S.; Koscho, M. E.; Grubbs, R. H.; Lewis, N. Anal. 2.5 cm pieces
Chem.2003 75, 1748. ’ P S . . .
(38) Sotzing, G. A Phend, J. N.: Grubbs, R. H.; Lewis, NCBem. Mater. Sensor films consisted of suspensions of various amounts of

200Q 12, 593. carbon black and either pure organic material or mixtures thereof

[I. Experimental Section
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Table 1. Sorption Material Used in Carbon Black—Nonpolymeric exposure to the detectors consisted of a three-step process that was
C%TP?(SE‘; Sd‘?”sgars fzr((a)‘)gls"/‘;_a”dM(bt) 2'5(|)/0U(bydMa§:S) gafbon initiated with 70 s of airflow to achieve a smooth baseline resistance.
aci adings® and (C orption aterial Used In Carpoon . . . .
Black—Polymer Composite SensoréAs Reported Previously Analyte vapor at a controlled concentration in flowing air was then
introduced to the detectors for 80 s, followed by 60 s of airflow to
ensure that the baseline resistance value was restored before the

amount (mg)

sensor sorption material sorption plasticizer CB  next exposure.
AL ol t(a) 75% Carbon Black Loadigg o 150 Analytes consisted of five nonpolar hydrocarbons (cyclohexane,
propyl gallate - - - i
A2 quinacrine dihydrochloride dihydrate 50 0 150 N hexanen-heptanen octgne, and isooctane) as .weII as ethangl
A3 lauric acid/dioctyl phthalate 35 15 150 and ethyl acetate. In the primary set of data collection for composite
A4 tetracosane/dioctyl phthalate 35 15 150 sensors having high carbon black loadings, these seven analytes
A5 tetracosanoic acid 50 0 150 were presented in random order 200 times each to the detector array
A6 quinacrine dihydrochloride 35 5 150 during a single run over 4 days, at a partial pressure in air such
dihydrate/dioctyl phthalate o _ . . .
A7  tetracosanoic acid/dioctyl phthalate 35 15 150 thatP/P° = 0.0050, whereP is the partial pressure arif is the
(b) 20-25% Carbon Black Loading vapor pressure of the analytfe at room temperature. In a separate
Bl tetraoctylammonium 30 80 20 run to evaluate the concentration dependence of the sensor response,
bromide/dioctyl phthalate concentrations ofi-hexane and ethanol were varied at 10 different
B2 lauric acid/dioctyldphthalate 80 70 20 values ofP/P® within the range 0.00x P/P° < 0.07, with five
B3 tetracosanoic aci 80 0 30 : At : ’
B4 tetracosanoic acid/dioctyl phthalate 30 50 oo EXposures to each analyte/c_oncentratlon combination, in _randomlzed
B5 tetracosanoic acid/dioctyl phthalate 100 60 40 order. Each exposure consisted of 100 s of laboratory air, followed
B6 propyl gallate 160 0 40 by 100 s of analyte and by 100 s of laboratory air, at a flow rate
B7 1,2,5,6,9,10-hexabromocyclo- 100 60 40 of 5L min—i.
dodecane/dioctyl phthalate . .
B8  quinacrine dihydrochloride dihydrate 160 0 40 An identical data run was used to evaluate the performance of
B9  quinacrine dihydrochloride 100 60 40 the sensors with low carbon black loadings, with the seven analytes
dihydrate/dioctyl phthalate presented in random order 200 times each to the detector array
(c) Previously Reported Sorption Materials during a single_ run over 4 day_s. Additionally, subsequent runs which
- - were identical in their randomized analyte exposure order, exposure
sensor SOfptIOI’] material . .
times, and protocols were performed to assess the long-term drift
cl polycaprolactone (PCL) and stability of the sensors. The second run was initiated 2 days
Cc2 poly(ethylenezo-vinyl acetate) (PEVA) fter th leti f the first - the third initiated 2
c3 poly(ethylene oxide) (PEO) after the completion of the first run; the third run was initiate
ca poly(ethylene glycol) days after the completion of the second run, and the fourth run
C5 poly(methyl vinyl etheo-maleic anhydride) was initiated 6 months after the completion of the third run. In
gg Eg:yg‘;‘l’;gxg’geno') these experiments, analytes were presented to the detector array at
Yy i i 0 —
Cs poly(vinyl butyral) concentrations corresponding BP° = 0.0050.
C9 polystyrene (PVS) D. Data Processing.The response of a sensor to a particular

2 Plasticizer denotes the amount of dioctyl phthalate. A total of 20 mL analyte was expressed @Rna/R,, where R, is the baseline
of either THF or toluene was added to sorption and plasticizer materials, resistance of the sensor addR,y is the steady-state resistance
s i A o ' S oo R a3 d{ne S1ange upon exposing he sensor (o analte(after corecing for
glycol) dibenzoate (plgsticizer), and 20%p(by wt) of carbon lglack. Y baseline dr.lft)' The vglue QRR”‘&.‘X was obtained fromRmax — Rb
whereRmnax is the maximum resistance value observed during the
analyte exposure, calculated by averaging over at least three
consecutive resistance measurements (in most cases four or five)
in the steady-state portion of the response signal. The val&s of
was calculated by averaging over five resistance measurements
before the exposure was initiated. The ratiometric quatfy.,/
R, was used as the response descriptor because it has been shown
in similar detector films to be both relatively insensitive to the vapor
these suspensions across the 0.2 cm gap on the detector substratgétmducno_n technique and to Increase linearly W'_th analyte
until the resistance between the two leads was WD kQ, as concentratio#33>All dgta processing was performed using Matlab
measured by a Keithley model 2002 multimeter. After fabrication, (The Mathworks, Natick, MA).
all sensors were placed in a stream of dry air for at least 24 h prior ~ E. Quantification of Classification Performance.For quanti-
to exposure to the test analytes. fication of the analyte classification performance, the responses from
C. Measurements. The instrumentation and apparatus for each of the data sets were sum-normalized. This process was

in 20 mL of either toluene or THF. Typically, the desired mass of
organic sorption material was dissolved in 20 mL of solvent, and
sufficient carbon black was then suspended in this solution to
produce the desired mass fraction of organic material and carbon
black, by weight of solids (Table 1). Prior to fabrication of the
sensor films, the casting suspension was sonicateg 36rmin at
room temperature. An airbrush (Iwata, Inc.) was d%e¢d spray

resistance measurements and for delivery of analyte vapors has beeRe"formed using eq 1:
described previousl§?3435The array of sensors was housed in a

stainless steel assembly that was connected by Teflon tubing to a Si

computer-controlled, calibrated vapor generation and delivery S = n @
system. To initiate an experiment, the detectors were placed into a Z S

flow chamber, and an air flowfdd L min—! containing 1.104+ &

0.15 parts per thousand (ppth) of water vapor was introduced until
the resistance of the detectors stabilized. An individual analyte where§; refers to theARy/R, sensor response signal of tfia
detector (out oh total detectors) to théh analyte exposure, and

(39) Koscho, M. E.; Grubbs, R. H.; Lewis, N. 8nal. Chem2002 74, S; represents the sum-normalized analogueSpfFor sensors
1307. exhibiting a response that is linear with analyte concentration, this
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normalization procedure produces a unit vectonidimensional 25
space defining a location in this space characteristic of each test —no? polymer
analyte, regardless of analyte concentration. = 2 fJ e
The Fisher linear discriminant (FLD) algorithm was used on sum- § q r H r‘
normalized sensor response data to analyze the classification 5 !
performance of the sensors. In the FLD approach, the responses of :2
a training set are used to calculate a vector that projects response & L
data onto the one-dimensional space that maximizes the separation E
between two sets of data clustéts-or normalized data (eq 1) % e
produced by the responses of mletector array, this projection i " J & Kq k \ k._.] k
has the form ~ i pran ity
210s
n-1 05 -
D; = chsij (2 . tlrn.e o
2 Figure 1. Response of a tetracosanoic acid/dioctyl phthalate (75% carbon

black) composite (sensor A4) and a poly(ethyleoerinyl acetate) (40%
whereg; represents one of the — 1 weighting factors from the carbon black) composite (sensor C2) on exposune-exane aP/P° =

. . 0.0050. Of all the sensors employed in this study, these two exhibited the
hyperplane determined by the FLD algorithm. The valueDof highest signal and lowest noise upon exposure-texane. Additionally,

(hereafter referred to as tlizvalue) is a single, scalar metric that  six exposures of the nonpolymetarbon black composite sensor (A4) are
characterizes the position, along a vector normal to the hyperplaneshown. A total of 1, 35, 44, 62, and 71 h, as well as continuous random
decision boundary, of the detector array data produced by an&Xposures to each of the test analytes_, occurred_ between the first response
individual analyte exposure. The chosen hyperplane decision shown and the second, third, fourth, fifth, and sixth responses.

boundary is defined as the point in one-dimensional projected space
for which a data point lying on this plane has an equal probability
of belonging to either of the two data clusters.

The FLD algorithm maximizes the separation, or clustering, of
the two distinct populations dD values that arise from a single
binary separation task. This clustering is measured by the resolution
factor (rf) characteristic of a separation task, as given in &4 3: lll. Results

limit determination, carbon blaekpolymer composite sensors were
also exposed simultaneously with carbon btaoknpolymer
composite sensors to ensure equal vapor deliveries and representa-
tive analyses.

) 3) A. Vapor Response Characteristics and Reproduc-
ibility. Carbon black loadings a£10, 25, 50, and 75 wt %
were investigated, and 75% loadings exhibited a higher SNR,

Here, o is the difference in the population means of Dealues, lower detection limit, and enhanced clustering relative to

andoy ando are the standard deviations of the two populations of other loadings. Thus, results on sensor films made from 75%

D values that c_orrespond to the two analytes of the separation taskcarbon black loadings are primarily reported herein. Ad-

The FLD algorithm was used to evaluate the separation betweenjiinng| results are described for a 6-month stability and drift

each possible pairwise combination of analytes in the data set. study that was performed on sensors having various lower

Because a supervised algorithm inherently introduces some bias

into the analysis, a train/test scheme was employed. For each pairCarbon black loading levels. In each case, the carbon black

of analytes that comprised a single separation task, the first 100I0ad|ng Wa_s suﬁ|C|ent't0 ensure that the ch'em'lreSIStors. were
exposures to each analyte (exposured@0, data set 1) were used ~above t_helr percolation threshold_, th_at IS, In the h'_9h|y
to generate a training set and a set of coefficients (comprising a conductive state of the composite in which the films
classification model) as described in eq 2. A decision boundary displayed simple, ohmic resistance behavior between two
was then developed by defining the hyperplane at which an electrically conductive contacting leads. Such composites
unknown analyte exposure would have an equal probability consist of highly interconnected networks of conductive
(according to eq 3) of belonging to either analyte population of particles in a matrix of insulating organic material, but the
the given binary separation task. All subsequent data were treatedsyrycture of the organic material is difficult to elucidate
as test' Qata, in that the Fisher .algorllt.hm was not pgrformed af,terdirectly from scanning electron microscopy, X-ray photo-
the training phase, and analyte identities were classified a(:cordlngeIeCtron spectroscopy, or other spectroscopic methods be-

to their positions relative to the fixed FLD decision boundary. cause of the high mole fraction of carbon black in the
The SNR of a sensor for a given exposure was calculated as 9

f=—
(0_12_|_ 0_22)0.5

composites.
SNR= ARnax @ Table 1a and Scheme 1 present information on the high
Opaseline (75%) and low (26-25%) carbon black loaded sensor arrays.

o _ _ The first exposure in Figure 1 shows the baseline-corrected
whereopaseins'epresents the standard deviation in baseline resistance qgistance response of a nonpolymend polymet-carbon
before analyte delivery, calculated using at least five data points. black composite sensor on exposureitbexane ap/P° =

0 — I . . .
The same analytes &P 0.0050 _have be_en _prewously 0.0050. Shown are tetracosanoic acid/dioctyl phthalate (75%
exposed to carbon blaelpolymer composite chemiresistors. Such

data have been analyzed in the same manner as those for the senso?érbon black; sensor A4) and poly(ethylm@vinyl acetat.e)_
under study and are given for comparigéR232.3435pecifically, (40% carbon black; sensor C2) films, which both exhibited

resolution factors and SNRs were Compared for both types of the h|ghest Signal and lowest noise for each of their I’espective
sensors from previously recorded and reported data. For detectionS€NSOr array types investigated. The resistance of all films
increased when analyte vapor was present and rapidly (i.e.,
(40) Fisher, R. AANn. Eugenicl936 179. within seconds) returned to its original baseline resistance
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Table 2. Sensor ResponseAR/Ry, (x10 000), of (a) Carbon Black-Nonpolymer Composite Sensors (75% Carbon Black, Table 1a) and (b)
Carbon Black-Polymer Composite Sensors to Seven Test Analytes Presented at a ConcentratiorPé?® = 0.005G

sensor n-hexane ethanol ethyl acetate cyclohexane n-heptane n-octane isooctane
(a) Carbon Black-Nonpolymer Composite Sensors
Al 42+09 6.4+ 0.8 8.0+ 0.7 1.7+ 0.3 4.4+1.0 6.3+ 1.0 3.1+1.3
A2 —125+7.2 15.0+ 2.9 2.6+ —-51 —51+29 —14.7+9.3 —16.6+9.4 —21.3+10.8
A3 21.7+£2.9 1.3+0.2 8.3+ 0.8 8.9+ 0.7 25.1+ 45 38.0+£7.4 274+ 4.1
A4 119+ 2.1 1.0+£0.2 45+ 0.7 5.6+ 1.6 13.2+ 3.8 19.9+ 6.1 15.9+ 4.0
A5 18.0+ 0.9 0.9+ 0.3 6.1+ 0.5 5.2+ 0.5 23.2+ 0.9 36.5+1.4 24.2+0.8
A6 24+03 6.9+ 1.0 24+ 04 1.6+ 0.2 22+04 27+ 05 27+04
A7 18.7+ 1.0 0.8+ 0.2 5.8+ 0.3 6.8+ 1.0 23.1+ 15 35.6+ 2.6 248+ 1.2
(b) Carbon Black-Polymer Composite Sensors
C1l 3.2+ 0.2 6.1+ 0.2 13.3£ 0.3 49+ 0.2 2.8+ 0.2 2.8+ 0.1 3.3+0.1
C2 18.2+£ 0.5 12.0+ 0.5 48.4+ 1.3 27.9+ 0.6 16.6+ 0.5 17.9+ 04 19.7+ 0.5
C3 42+04 3.2+04 5.8+ 0.2 5.6+ 0.2 4.2+0.2 47+£0.2 5.2+ 0.2
C4 2.1+0.2 2.7+ 0.2 12.3+£ 0.4 3.4+0.2 1.7+ 0.2 1.6+0.2 1.8+0.2
C5 20.2+ 0.6 6.6+ 0.3 37.8+1.1 31.0+1.0 18.5+ 0.6 20.1+ 0.5 22.4+ 0.5
C6 18.7£ 0.6 11.9+0.5 49.6+ 1.9 287+ 1.1 16.9+ 0.6 18.2+ 0.5 20.0+ 0.5
C7 147+ 0.5 7.5+ 0.3 55.3+ 2.0 23.8+£ 0.9 12.9+ 0.5 13.5+£ 0.4 14,5+ 0.3
Cc8 0.6+ 0.1 15+0.1 5.7+ 0.2 0.5+ 0.1 0.5+ 0.1 0.4+0.1 0.2+ 0.1
Cc9 6.8+ 0.5 12.2+ 0.5 34.6+ 0.9 6.1+ 0.4 57+ 04 5.2+ 0.3 2.3+0.3

aThe sensors were subjected to 200 exposures to each analyte selected from 1400 randomly ordered exposures to seven test analytes. Means and standar
deviations are given for each sensor (meastandard deviation).

value after the vapor exposure had been discontinued.affect the ability to accurately model and predict based on
Nonpolymer-carbon black composite sensors consistently sensor array response patterns.
displayed SNRs and response magnitudes comparable to SNRs were calculated for each sensor on exposure to each
those obtained with the well-studied polymearbon black of the test analytes. Table 3a details the means and standard
composite sensors evaluated in this work. deviations of the SNRs for each carbon blaclonpolymer
Figure 1 also displays the response of a representativecomposite sensor on exposure to the various test analytes
sensor (tetracosanoic acid/dioctyl phthalate)ntbexane. each presented 200 times in random ordé¥/Bf = 0.0050.
Sensor responses shown were at 0, 1, 35, 44, 62 and 72 h ifror comparison, Table 3b presents the SNRs of the carbon
a run of randomized exposures to the seven test analytesblack—polymer composite sensors on exposure to these
As observed in Figure 1, in all cases, the sensor fully returned analytes at the same partial pressur@t = 0.0050. The
to the same response on exposurerioexane atP/P° = two sensor types exhibited similar SNR values, with different
0.0050, as well as returned to the same baseline resistanceensors performing better in different cases.
on exposure to laboratory air. This was the case for the B. Concentration Dependence of Sensor Response.
majority of exposures95%); however, hysteresis did occur Figure 2a,b displays the responses of several typical carbon
randomly in a small percentage of exposures. Therefore, black—nonpolymer composites as a function of the vapor
sensor responses were baseline corrected, forcing sensgphase concentration efhexane and ethanol, respectively.
readings to fully return to their initial baseline resistance; For the relatively low analyte concentrations used in this
this ensured thatR.»/R, was due solely to the sensor/ study, the sensor responses were well-described by a linear
analyte interaction and not due to sensor drift. dependence oR/PY, indicating operation above the percola-
Table 2 presents the sensitivities and standard deviationstion threshold. This relationship has also been observed for
of the responses measured for the seven different carborcarbon black polymer composite sensors operating above
black composite sensor compositions exposed to the severihe percolation threshof.
test analytes studied in this work at an activityRP° = Table 4a presents the limits of detection based on the
0.0050 in air. Sensitivities varied significantly across the ARma/Ry versus concentration data presented in Figure 2.
analytes tested, and a given analyte produced differentSNRs were calculated (eq 4) for each of the sensors on
responses on different sensor films. exposure to hexane and ethanol at various fractions of their
Different levels of variability were observed in the Vapor pressure (0.0020 P/P° < 0.0625), and detection was
response of each of the sensors. Part of this variability in taken to be the partial pressure at which SNR. Limits
the response amplitude can be ascribed to sensor noise, whicRf detection ranged fror/P° = 0.002 toP/P° = 0.0075,
is inherent and unique to each of the sensors, as well as toVith most values near 0.0035 or 0.005. These thresholds were
variation in room temperature during the exposures. For converted to parts per million for display. For comparison,
example, a 2C change in room temperature produces a 4.5% Table 4b gives detection limits for several carbon btack
change in the vapor pressurershexane (the vapor pressures Polymer composites, exposed simultaneously with optimized
of n-hexane at 20 and 2iC are 119.9 and 125.3 Torr, carbon black-nonpolymer composite sensors to ensure a
respectivelyy! Additionally, slight (though significant) drift representative comparison. The limits of detection for the

was observed for several of the sensors, though this did notcarbon black-polymer composite sensors are in accord with
values reported previousty The carbon blacknonpolymer

(41) Weast, R. CCRC Handbook of Chemistry and Physié8th ed.; CRC
Press: Boca Raton, FL, 1989/1990. (42) Doleman, B. J.; Lewis, N. SSens. Actuators, B001, 41.



5198 Chem. Mater., Vol. 18, No. 22, 2006 Gao et al.

Table 3. SNRs of (a) Carbon Black-Nonpolymer Composite Sensors (75% Carbon Black, Table 1a) and (b) Carbon BlaekPolymer Composite
Sensors (Table 1c) to Seven Test Analytes Presented at a ConcentrationR$P° = 0.005¢

sensor n-hexane ethanol ethyl acetate cyclohexane n-heptane n-octane isooctane
(a) Carbon Black-Nonpolymer Composite Sensors
Al 90+ 62 142+ 89 99+ 49 45+ 31 73+ 41 65+ 31 38+ 32
A2 —136+ 109 109+ 65 25+ 22 —52+ 45 —151+ 145 —97+79 —230+ 172
A3 152+ 62 16+ 7 81+ 33 86+ 33 150+ 41 164+ 36 155+ 46
A4 100+ 49 13+ 6 46+ 19 54+ 30 97+ 51 131+ 44 101+ 40
A5 55+ 19 5+4 25+ 14 22+ 15 64+ 23 73+ 18 75+ 36
A6 25+ 10 68+ 34 24+ 11 18+ 8 23+10 27+ 10 29+ 13
A7 99+ 26 14+ 8 61+ 27 82+ 38 98+ 23 90+ 17 112+ 24
(b) Carbon Black-Polymer Composite Sensors

C1 102+ 40 102+ 40 505+ 190 215+ 81 134+ 54 138+ 46 143+ 58
c2 465+ 211 211+ 102 763+ 187 809+ 276 586+ 220 636+ 240 746+ 313
C3 32+ 12 30+ 10 107+ 45 61+ 22 39+ 14 43+ 16 56+ 23
C4 29+ 12 62+ 23 190+ 87 60+ 22 32+ 11 35+ 14 42+ 20
C5 104+ 45 53+ 21 193+ 76 182+ 75 133+ 51 146+ 56 198+ 84
C6 46+ 21 311+ 124 585+ 278 68+ 32 54+ 20 46+ 18 38+ 15
c7 238+ 77 146+ 57 1355+ 654 526+ 217 295+ 181 304+ 111 320+ 123
Cc8 30+ 12 87+ 38 206+ 80 24+ 8 34+ 15 33+ 13 15+ 8
Cc9 65+ 30 54+ 23 326+ 111 49+ 13 77+ 32 70+ 22 29+ 11

aThe sensors were subjected to 200 randomly ordered exposures to each of the seven test analytes. Means and standard deviations are given for each
sensor (mear- standard deviation).

Table 4. Approximate Limits of Detection in PPM of (a) Carbon 1 - . - . 4 d

Black—Nonpolymer Composite Sensors (Table 1a) and (b) Carbon 09{ (a) lauric acid/

Black—Polymer Composite Sensors (Table 1c) for the Detection of i dioctyl phthalate 7
n-Hexane and Ethanot (A3)

(a) Carbon Black Nonpolymer Composite Sensors

o o
~ o
——

sensor
analyte Al A2 A3 Al A5 A6 A7

-
o

i }

(AR_, /R,) (x1000)

0S¢ * {lemu:osanoic acid ]
n-hexane 110 100 100 100 100 60 140 04l (AS)
ethanol 50 50 50 40 40 40 40 ’ ¥ } {
0.3f tetracosane/ (A4)
(b) Carbon Black-Polymer Composite Sensors o [ i dioctyl phthalate
.2r i quinacrine
sensor » " ; i E dihydrochloride
analyte ~ PVS(C8) PEVA(C2) PCL(Cl) PEO(C3) 01 . . dihydrate! (A6)
: ; ; : . diocryl phthalate
n-hexane 120 140 160 140 01 12 14 16 18 2 22 24
ethanol 70 50 80 50 (PfP“) (XIOOO)
aThe limit of detection is defined as the vapor concentration in PPM at : . : : 3
1.2r =]
. S . L propyl gallate (Al
composite sensors exhibited comparable detection limits =
when compared to these well-studied and developed carbon § ' { 1
black—polymer composite sensors. E - { e
C. Sensor Specificity. Figure 3 presents the mean } :::ﬁg:'&’;;
responses, averaged over 200 randomly ordered exposures® g ¢l { I i
to each analyte, for each of the carbon blaoknpolymer n:E i quinacrine (A
composite films to the seven test analyte vaporB/Bf = %G o i 3 sl
0.0050. Large differences in sensitivity were observed ™~ M § dioctyl phthalate
between the responses of a given sensor upon exposure to  *? e tetracosanoic acid/ |
. . . . F . ® jioctyl phthalate
the various test analytes. For example, quinacrine dihydro- ) . . I ] ) : (A
chloride dihydrate (sensor A2) displayed a strong positive ! 12 ‘-EP ;'P°)“Ex { ”‘) 2 . 23

response on exposure to a prototypical polar analyte, ethanol, _
while displaying a strong negative response to a prototypical ':;g;;szés %'%to /OOEasreb‘;enrﬂl;‘:&Eﬁgﬁfﬁ?ﬁg’;_Ef;:ngoggog)';eetshe;‘nsé’lr
nonpolar analyte,n-hexane. This can be attributed tO 4 various concentrations.

insolubility of the latter compound with nonpolar solvents

resulting from dielectric constant differences and molecular to n-hexane was produced by poly(ethylerevinyl acetate)
size. Additionally, a tetracosanoic acid/dioctyl phthatate (sensor C2), with a ratio of 4, and the smallest ratio was
carbon black composite (sensor A7) exhibitechamexane/ achieved by poly(vinyl butyral) (sensor C8), with a ratio of
ethanol response ratio of 22, while a quinacrine dihydro- 0.4 (Table 2b). Clearly, the use of organic molecular sorption
chloride dihydrate/dioctyl phthalateearbon black composite  phases having a high density of hydrophilic or hydro-
(sensor A6) displayed amhexane/ethanol response ratio of phobic functional groups can produce sensor arrays that
0.3. For comparison, of the polymecarbon black composite  display large discrimination power between differing test
sensors investigated, the greatest response ratio of ethangbairs of analytes.



Chemiresistors for Array-Based Vapor Sensing Chem. Mater., Vol. 18, No. 22, 2098

— = | Table 5. Resolution Factors Displaying the Ability of the (a) Carbon
Black—Nonpolymer Composite Sensor Array (Table 1a, Sensors

40 A1—A7) and (b) Carbon Black—Polymer Composite Sensor Array
| (Table 1c, Sensors C£C9; from Raw Data Previously Reported®?)
- i 30 To Distinguish between Test Analytes Presented &/P° = 0.005G
| n- ethyl cyclo- n- n- iso-
| 20 analyte hexane ethanolacetate hexane heptane octane octane
i-octane F . ) | .
soctane 1 (a) Carbon Black-Nonpolymer Composite Sensor Array
whepane | 10(AR ,,/Ry) nhexane  N/A 446 133 61 64 99 62
et | B "~ o (x10000) ethanol NA - 27 365 475 517 50
ethanol | & | ethyl acetate N/A 143 154 206 145
hexane | N ]_10 cyclohexane N/A 8.2 10.1 6.9
4 n-heptane N/A 4.2 3.7
\ | 20 n-octane N/A 4.8
! [ isooctane N/A
I N -30 (b) Carbon Black-Polymer Composite Sensor Array
- —— n-hexane N/A  10.73 6.13 2.47 1.23 1.65 3.49
Al A2 A3 A4 AS A6 AT ethanol N/A 242 291 2328 2523 2585
Sensor number ethyl acetate N/A 30.42 1551 27.09 32.09

Figure 3. Three-dimensional pattern depicting the average carbonblack ~ Cyclohexane N/A - 394 443 1023

nonpolymer sensor responses (Table 1a) to the seven test analytes at &-neptane N/A - 167 681
concentration of/P° = 0.0050 in air. Standard deviations of the sensor gggé?;‘r‘?e N/A ?\J:

responses are given in Table 2a.
aIn each case, for a given separation task, a FLD model was trained on

1 O n-hexane exposures 4100, and exposures 18200 were then tested using the model.
Reported values are for exposures +@00.
PC3 (4%) = P P
a . e . . .
o qjohmm which quantifies the statistical separation between the two
® y-heptane data clusters of interest. The first 100 normalized exposures
g{ n-octane # to each analyte were used as a training set, and the remaining
i=octane

100 normalized exposures to each analyte, from the same
set of data collection, were used as a test set. This train/test
scheme was adopted to avoid bias resulting from possible
overfitting of data.
f Table 5a presents resolution factors for the carbon btack

T Y T R P nonpolymer composite sensor array (sensors-AZ). For
' Pci](mcy: ) comparison, Table 5b presents resolution factors for an array
Figure 4. Principal components analysis showing principal components of Ca.rbon black polymer comp03|te_ sen_sors conS|stlng of
1,2, anoi 3 from normalized sensor array response data. For visualizationthe nine polymers (sensors €C9) given in Table 1c. This
ease, only the first 50 exposures to each of the test analytes are analyzediine-sensor carbon blaefpolymer composite array was
are shown: The valves in parenthesis are the percentage of the total variancg hosen from a nonexhaustive search Seeking the best nine-
in each principal component. sensor array that maximized the resolution factors for the

D. Sensor Array Response to Various AnalytesPrin- worst-resolved pairsX15 nine-sensor array combinations
cipal components analydiswas used to visualize the were investigated, and the “best” sensors based on experi-
differences in normalized autoscaled response patterns of a&nce, polycaprolactone, poly(ethylec@vinyl acetate), and
seven element carbon black composite sensor array (Tablgoly(ethylene oxide), were always included). In terms of the
la) exposed randomly 200 times to each of the seven testability to resolve various analytes, the nonpolymeric com-
analytes aP/P° = 0.0050. The points plotted in Figure 4 posite sensor array performed highly favorably relative to
represent unique response patterns of the sensor array to eadhe well-developed and well-studied polymer-based sensor
of the analytes presented. The response vectors are displayedrray, with significant increases in resolution in many
with respect to the first three principal components of the previously difficult classification tasks. For example, in
data set, which contained 96% of the variance in detector classifyingn-hexane from cyclohexanssheptanen-octane,
response. Several major clusters are observed: ethanol, ethydr isooctane, resolution factors of 2.5, 1.2, 1.7, and 3.5,
acetate, and cyclohexane, as well as a clustering of therespectively, were observed for the polymer composite-based
remaining alkanes. This remaining cluster of alkanes alsosensor array. The use of a carbon blaoknpolymer
displays a distinct pattern, which can also be seen in Figurecomposite sensor array increased these resolution factors to
4. Even at the relatively low analyte concentrations used in 6.1, 6.4, 9.9, and 6.2, respectively. A resolution factor of 1
this study, the sensor array readily distinguished extremely implies 68% correct classification, 2 implies 95.5% correct
well between polar and nonpolar analytes, as well as classification, and 3 implies 99.7% correct classification. This
providing reasonable clustering among very similar polar new sensor type thus takes previous classification tasks which
analytes. perform at levels slightly above chance, and provides the

The classification performance of the sensor array was ability to consistently and confidently correctly classify such
quantified by use of the FLD algorithm for pairwise analyte analytes.
classification. The figure of merit to determine the effective-  E. Stability and Drift. A FLD model for each binary
ness of the FLD model is the resolution factor, rf (eq 3), separation task, consisting of projection weights and a
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Table 6. Performance Values of a Low Mass Fraction Carbon that a new model, with different projection weights for each
Black—Nanpolymer Composite Sensor Array (Table 1b, Sensors analyte, and a new decision boundary need to be created, or
B1—B9) in Various Binary Separation Tasks ! . !
(2) that the same model approximately captures maximum
resolution between analyte clusters, but the clusters have
drifted with respect to the original decision boundary. In the

n- ethyl cyclo- n- n- iso-
analyte hexane ethanolacetate hexane heptane octane octane

(a) Data Set 1

n-hexane N/A 1 1 1 082 095 1 latter case, a calibration scheme has proven capable of
ethanol N/A 1 1 1 1 1 restoring the classification performance of carbon btack
ethyl acetate NA- L 1 o1 polymeric composite sensatsTo compensate for this type
cyclohexane N/A 1 1 0.92 . . RS
n-heptane NA 084 1 of drift, sensor responses were adjusted by a multiplicative
n-octane N/A 1 calibration factor:
isooctane N/A
(b) Data Set 2 _ Sa,o
n-hexane N/A 1 1 1 0.73 0.79 1 Sa,t - Sctsc_ (5)
ethanol N/A 1 1 1 1 1 0
ethyl acetate N/A 1 1 1 1 L .
cyclohexane N/A 1 1 056 whereS, tandS:;indicate theAR/R, response signals for an
n-heptane N/A~ 059 1 analyte a and calibrant c, respectively, at some tirafter
ins'ggg’t‘gﬁe NIA Nl/A training, andS,oandS. o are the initial responses to analyte
(0) Data Set 3 a and calibrant €3
n-hexane N/A 1 1 099 066 079 1 Table 7 presents the classification performance for each
ethanol N/A 1 1 1 1 1 binary separation, using each analyte as a calibrant, when
i;g’éﬁg:::g N/A N}A oég 8'33 015 ,  the initial model (based on exposures 100, data set 1)
n-heptane NA 064 1 was used on the final data set (200 exposures, recorded 6
n-octane NA 1 months after the initial data set). The first three exposures
Isooctane N/A from the final data set were used to calibrate the model
(d) Data Set 4 according to eq 5 and were then followed by 47 test
n-hexane N/A 094 098 051 0.51 05 059 g h'q | f lib / y d th
ethanol N/A 1 088 095 091 098 exposures. This cycle of calibrate/test was repeated three
ethyl acetate N/A 099 098 099 09 additional times, accounting for all 200 exposures of the final
cyclohexane N/A - 052 051 05 data set. For clarity, performances are given for binary
n-heptane N/A 0.5 0.59 . . . .
n-octane NA 062 separatlons both without the use of calibration and for the
isooctane N/A calibrant that proved most effective; cases where reasonable

aTrained on the first 100 exposures to (a) data set 1 and applied to variousP€rformances are attained are shown in bold text. Of the 21

sets of data collection, with various times between each set of data collection.combinations of binary analyte separations, 17 yielded
(b) Data set 2, (c) data set 3, and (d) data set 4 were collected 2 days, Gperformance scores af0.90.

days, and 6 months, respectively, after the initial data set that trained the . . .
Fisher model used for classification. For binary separations with low performance values, even

after the calibration scheme was employed, the sensor array
decision boundary, was constructed from sensor responsesvas still capable of resolving between analyte pairs in the
in the first data set of the first 100 exposures to each analyte.data set; however, a rigorous training period was again
This model was then applied to 700 subsequent exposuresequired to construct a new model for effective analyte
spread over four sets that spanned six months of dataseparation. For example, the binary classification-béxane
collection. The exposures for each binary separation taskand n-heptane yielded a performance of 0.49 and had a
were then projected onto the FLD vector characteristic for resolution factor of 0.02 when the initial model was applied
the given separation task, placing data into the one- to the final data set. However, if the first 100 exposures of
dimensional space which initially maximized the resolution data set 4 were used to construct a new model, a resolution
factor between the two analytes of interest. These analytefactor of 1.5 and a classification performance of 0.88 were
projections were compared to the originally modeled decision achieved for the final 100 exposures of data set 4. These
boundary for the given binary separation and thereby values are comparable to those obtained from training on
assigned to be in one of the two analyte clusters. The the first 100 exposures and testing on the final 100 exposures
performance factor is defined as the number of correct of data set 1, with a resolution factor and performance of
classifications divided by the number of classification 1.5 and 0.88, respectively (Tables 5 and 6). Thus, no sensor
attempts. Table 6 lists the performance factors for all performance was lost, but the initial model describing the
combinations of binary separations for each set of data sensor response behavior changed significantly, resulting in
collection. the loss of predictive ability.

Binary separation performances were comparable through- Figure 5a shows projections of 700 exposures, spread over
out the first three data sets, which spanned 1 month. four sets of data collection, for a FLD model constructed
However, the fourth data set, collected 6 months after the from the first 100 exposures in data set 1. Figure 5b shows
initially trained model, yielded extremely low classification these same projections, when a calibration scheme was
performance in many situations. In terms of the Fisher model, adopted in which three exposures were first used as calibrant
two possible explanations of this performance loss are (1) runs, followed by 47 test exposures, with the process repeated
that a new dimension for each binary analyte separation
captures maximum resolution between analyte clusters, so(43) Sisk, B. C.; Lewis, N. SSens. Actuators, B005 104, 249.
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Table 7. Performance Values of Carbon Black-Nonpolymer Composite Sensors (B3B9) when a FLD Model Was Trained on 100 Exposures
and Tested on 200 Exposures 6 Months Later, with the Use of Calibratich

calibrant used calibrant comparison

classification task n-hexane ethanol ethyl acetate cyclohexane-heptane n-octane isooctane no calibrant best calibrant
n-hexane/ethanol 0.58 0.98 1 0.82 0.86 0.96 0.95 0.94 1
n-hexane/ethyl acetate 0.57 0.96 0.98 0.7 0.85 0.73 0.84 0.98 0.98
n-hexane/cyclohexane 0.86 0.52 0.51 0.83 0.88 0.9 0.74 0.51 0.9
n-hexanei-heptane 0.5 0.56 0.55 0.5 0.53 0.5 0.49 0.51 0.56
n-hexanef-octane 0.49 0.57 0.56 0.51 0.53 0.55 0.51 0.5 0.57
n-hexane/isooctane 0.91 0.59 0.6 0.88 0.95 0.97 0.86 0.59 0.97
ethanol/ethyl acetate 0.51 1 1 0.75 0.84 0.86 0.76 1 1
ethanol/cyclohexane 0.58 0.95 0.99 0.83 0.85 0.98 0.95 0.88 0.99
ethanolih-heptane 0.59 0.9 0.99 0.83 0.86 0.98 0.97 0.95 0.99
ethanolh-octane 0.57 0.89 0.99 0.84 0.85 0.97 0.96 0.91 0.99
ethanol/isooctane 0.57 0.99 1 0.85 0.86 0.99 0.98 0.98 1
ethyl acetate/cyclohexane  0.57 0.86 0.98 0.73 0.84 0.73 0.83 0.99 0.98
ethyl acetateh-heptane 0.58 0.76 0.97 0.71 0.85 0.74 0.85 0.98 0.97
ethyl acetateh-octane 0.57 0.97 0.99 0.72 0.85 0.74 0.85 0.99 0.99
ethyl acetate/isooctane 0.53 0.53 0.89 0.72 0.81 0.72 0.82 0.9 0.89
cyclohexaneh-heptane 0.86 0.7 0.68 0.82 0.86 0.91 0.78 0.52 0.91
cyclohexanen-octane 0.9 0.91 0.79 0.82 0.91 0.95 0.83 0.51 0.95
cyclohexane/isooctane 0.48 0.5 0.5 0.58 0.48 0.54 0.57 0.5 0.58
n-heptaneai-octane 0.49 0.52 0.51 0.5 0.51 0.54 0.51 0.5 0.54
n-heptane/isooctane 0.89 0.89 0.8 0.88 0.93 0.97 0.9 0.59 0.97
n-octane/isooctane 0.89 0.9 0.88 0.87 0.91 0.96 0.91 0.62 0.96

aScenarios for the best calibrant and for the use of no calibrant are listed for direct comparison; binary separation tasks capable of high pevfirmance
a 6 month period between the training and the test phases are shown in bold.
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Figure 5. “Waterfall” plots detailing drift ofD values (the single dimensional projection of the sensor array response which initially maximized the resolution
factor for the classification task at hand) vs exposure number fon-thexane/isooctane binary separation task. The first 100 exposures of data were used

to train the model. A decision boundary (solid line) based on these first 100 exposures is shown. Results are shown for (a) no calibration and for (b)
calibration usingn-octane.

throughout the remaining 700 exposures of the data set. Theamong various analytes. In this respect, the carbon black
projected dimension clearly maintained a reasonable levelnonpolymer composite sensors surpass the performance of
of separation between the two analytes (although this is noprevious sensor classes, including the well-studied carbon
longer the optimal one-dimensional space for resolution); black—polymer composite sensors (Table 5a,b). Significant
however, the analyte clusters drifted relative to the decision improvements were observed, in particular, in the ability of
boundary. The calibration process shifted these projectionsthe sensor array to distinguish between various types of
back to the decision boundary, and classification performancealkanes, namelyy-hexane, cyclohexans;heptanep-octane,

was restored. and isooctane.

The nonpolymeric sensors are well-suited to detect and
exploit subtle differences between analytes, owing to a higher

The vapor sensing properties of the carbon btack density and random arrangement of functional groups, as well
nonpolymeric composite sensors and sensor arrays compar@s an enhanced SNR for analyte detection. In typical carbon
favorably in all aspects to the well-investigated carbon black—polymer composite sensors, functional groups are
black—polymer composite sensing films. The nonpolymeric present at certain repeat units along the polymer backbone,
sensors provide improved analyte clustering and greaterand this structural motif places a limit on the functional group
analyte resolution/classification capability, as well as a high density as well as a limit on possible analyflymer
level of signal-to-noise and low detection limit thresholds. interactions, due to steric hindrance. With the carbon btack

A measure of the performance of a sensor array is nonpolymer composite sensor array, a higher functional
the resolution factor, which is a measure of the ability of a group density, as well as random packing, can provide more
given sensor array to distinguish between and discriminate specific sensoetranalyte interactions which are able to better

V. Discussion
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capture subtle differences in analyte properties. High SNRsurine of infected individuals. For bio-sensing applications,
provide the means of detecting and describing these subtleit is desirable to have sensors with a high sensitivity to these
differences, which would likely be lost in the noise of other species. A key feature of using molecularly based sorbent
sensor types. These combinations allow carbon black phases is the ability to tune the sensitivity toward different
nonpolymer composite sensors to more precisely define theclasses of chemicals. The ratios of th&./R, responses
position of extremely similar analytes in sensor space, which of two carbon black-nonpolymer composite sensors, tetra-
translates into enhanced clustering and resolution ability. cosanoic acid/dioctyl phthalate and quinacrine dihydrochlo-
The carbon blacknonpolymer composite sensors also ride dihydrate/dioctyl phthalate, on exposuretbexane and
exhibited lower detection limits relative to typical carbon to ethanol, were 22 and 0.3, respectively. Additionally, the
black—polymer composite sensors (Table 4a,b). Thus, carbonsensor consisting of pure quinacrine dihydrochloride dihy-
black—nonpolymer composite sensors are more suitable for drate exhibited a strong positive response on exposure to
trace vapor detection, which broadens the potential areas ofpolar analytes and a strong negative response on exposure
application of these sensors. to nonpolar analytes. Such large differences for various other
The low mass fraction carbon blackonpolymer sensor  analytes could likely be produced by further development
array showed relatively little long-term drift over extended of this class of sensors.
time periods. Specifically, for most binary separation tasks,
the nonpolymeric composite sensors provided good analyte V. Conclusions

classification levels for at least 6 months after an initial Composites made from homogeneous or blended organic
training phase. When the sensors were used 6 months aftefyolecules and carbon black showed fast response times, good
an initial training period, 11 of the 21 binary separation tasks reversibility, high stability, and an excellent ability to
were performed with correct classification rates>80%  discriminate and classify between both similar and dissimilar
(Tables 6 and 7). Whelj a simple calibration scheme, which types of analytes. This type of composite sensor offers a
involved only 3 calibration exposures per 50 exposures, washigher density of functional groups, as well as a random
performed, th? nu.mber of bl_nary separation tasks witi%o orientation and random exposure of these functional groups
correct classification after six months increased to 17. Thoseithin the sensing material due to the lack of a restricting
cases yvhere performance was unacceptable even aftebmymer backbone. A seven-sensor array robustly resolved
calibration are the same as those reported for carbonblack gyen extremely similar test analytes, suchdsexane and
polymer composite sensors, for exarr;mdnexane VEISUS  n-heptane. Excellent SNRs can be achieved with these carbon
n-heptane on-heptane versus-octanet black—nonpolymer composite sensors, which provide com-

Plasticizers such as dioctyl phthalate (a viscous liquid) paraple limits of detection relative to the evaluated carbon
have been added to polymers to lower their glass transitionyjack—polymer composite sensors.

temperature and decrease the sensor response time to various
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