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Chemically sensitive resistors have been fabricated from composites of carbon black and low volatility,
nonpolymeric, organic molecules such as propyl gallate, lauric acid, and dioctyl phthalate. Sorption of
organic vapors into the nonconductive phase of such composites produced rapid and reversible changes
in the relative differential resistance response of the sensing films. Arrays of these sensors, in which
each sensing film was comprised of carbon black and a chemically distinct nonpolymeric organic molecule
or blend of organic molecules, produced characteristic response patterns upon exposure to a series of
different organic test vapors. The use of nonpolymeric sorption phases allowed fabrication of sensors
having a high density of randomly oriented functional groups and provided excellent discrimination between
analytes. By comparison to carbon black-polymer composite vapor sensors and sensor arrays, such sensors
provided comparable detection limits as well as enhanced clustering and enhanced resolution ability
between test analytes.

I. Introduction

Array-based vapor sensing has attracted significant interest
for its ability to detect and discriminate between various
analyte vapors.1 Surface acoustic wave devices,2-4 tin oxide
sensors,5-7 conducting organic polymers,8-10 polymer-coated
quartz crystal microbalances,11-13 polymer-coated micro-
machined cantilevers,14 thin film capacitors,15 dye-impreg-
nated polymers coated onto optical fibers or beads,16-18

transition metal-based dyes,19,20 and polymer composite
chemically sensitive resistors21-23 have all been explored in

array-based sensing approaches. In this architecture, each
sensor is not designed to respond selectively to a single
analyte, but instead each analyte produces a distinct finger-
print from the array of broadly cross-reactive sensors. Pattern
recognition algorithms can then be used to obtain information
on the identity, properties, and concentration of the vapor
exposed to the sensor array.24-27

One especially attractive signal transduction mode involves
the use of chemically sensitive resistors as the sensor array
elements.21-23 Such sensors are inherently low power,28,29

are compatible with very large-scale integration (VLSI)
processing,7,30 can be deposited onto a variety of substrates
including interdigitated electrodes,31 glass,32 ceramic,33 or
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other insulating materials, and can be fabricated in a wide
variety of form factors to optimize signal-to-noise ratios
(SNRs) and produce desired physical sensor and sensor array
configurations.32 Significant attention in our laboratory has
been devoted to the investigation of chemiresistive vapor
detectors fabricated from composites of carbon black and
insulating organic polymers,21,22,32,34,35in which the carbon
black serves as the electrically conductive phase and the
organic polymeric phase absorbs the organic vapor into the
sensor.

The sensitivity of sorption-based detectors depends on the
interactions between the analyte and the sorption material.36

Vapor sensors with enhanced sensitivity to analytes having
specific functional groups, such as amines or carboxylic
acids, can be obtained through fabrication of sorption
materials which target functional groups of the analyte of
interest.37,38 Increasing the density of the functional groups
in the sorption material could further increase the amount
of vapor sorption and therefore produce an additional increase
in the sensitivity of such chemically resistive vapor detectors.
In this work, we describe the properties of chemiresistive
vapor sensors that are comprised of composites of conductive

carbon black particles and an insulating organic material,
wherein the sorption phase consists of simple, monomeric,
low vapor pressure organic materials. Such sorption films
have a relatively high density of functional groups and
thereby could provide very effective sorption of organic
analyte vapors. The random arrangement of the organic
molecules in the sorption phase should produce a high vapor
permeability and therefore lead to rapid sensor response times
and could produce highly reversible responses that show
relatively little history efforts or hysteresis in response to a
wide range of organic analyte vapors. The use of nonpoly-
meric materials opens up a wide range of sorption phases
having desirable chemical functionality and physical proper-
ties that are in general not readily accessible in polymeric
materials.

II. Experimental Section

A. Materials. The insulating materials used in fabricating the
sensor films (Scheme 1) and the plasticizer dioctyl phthalate were
used as received from either Aldrich Chemical Co. or Acros
Organics Co. Reagent grade toluene,n-hexane, tetrahydrofuran
(THF), ethanol, ethyl acetate, cyclohexane,n-heptane,n-octane, and
isooctane were used as received from Aldrich Chemical Co. Black
Pearls 2000 (BP 2000), a furnace carbon black material, was
donated by Cabot Co. (Billerica, MA) and was used as received.

B. Detectors.Detector substrates were fabricated by evaporating
300 nm of chromium and 700 nm of gold onto glass microscope
slides using 0.2 cm wide drafting tape as a mask. After evaporation,
the mask was removed and the glass slides were cut into 1.0 cm×
2.5 cm pieces.

Sensor films consisted of suspensions of various amounts of
carbon black and either pure organic material or mixtures thereof

(34) Doleman, B. J.; Lonergan, M. C.; Severin, E. J.; Vaid, T. P.; Lewis,
N. S. Anal. Chem.1998, 70, 4177.

(35) Severin, E. J.; Doleman, B. J.; Lewis, N. S.Anal. Chem.2000, 72,
658.

(36) Popovska-Pavlovska, F.; Raka, L.J. Polym. Sci., Part B: Polym. Phys.
2004, 42, 267.

(37) Tillman, E. S.; Koscho, M. E.; Grubbs, R. H.; Lewis, N. S.Anal.
Chem.2003, 75, 1748.

(38) Sotzing, G. A.; Phend, J. N.; Grubbs, R. H.; Lewis, N. S.Chem. Mater.
2000, 12, 593.

Scheme 1. Structures of Materials Used in This Studya

a All of these materials, except dioctyl phthalate, are solids at room temperature.
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in 20 mL of either toluene or THF. Typically, the desired mass of
organic sorption material was dissolved in 20 mL of solvent, and
sufficient carbon black was then suspended in this solution to
produce the desired mass fraction of organic material and carbon
black, by weight of solids (Table 1). Prior to fabrication of the
sensor films, the casting suspension was sonicated for>30 min at
room temperature. An airbrush (Iwata, Inc.) was used39 to spray
these suspensions across the 0.2 cm gap on the detector substrates
until the resistance between the two leads was 10-100 kΩ, as
measured by a Keithley model 2002 multimeter. After fabrication,
all sensors were placed in a stream of dry air for at least 24 h prior
to exposure to the test analytes.

C. Measurements. The instrumentation and apparatus for
resistance measurements and for delivery of analyte vapors has been
described previously.23,34,35The array of sensors was housed in a
stainless steel assembly that was connected by Teflon tubing to a
computer-controlled, calibrated vapor generation and delivery
system. To initiate an experiment, the detectors were placed into a
flow chamber, and an air flow of 5 L min-1 containing 1.10(
0.15 parts per thousand (ppth) of water vapor was introduced until
the resistance of the detectors stabilized. An individual analyte

exposure to the detectors consisted of a three-step process that was
initiated with 70 s of airflow to achieve a smooth baseline resistance.
Analyte vapor at a controlled concentration in flowing air was then
introduced to the detectors for 80 s, followed by 60 s of airflow to
ensure that the baseline resistance value was restored before the
next exposure.

Analytes consisted of five nonpolar hydrocarbons (cyclohexane,
n-hexane,n-heptane,n-octane, and isooctane) as well as ethanol
and ethyl acetate. In the primary set of data collection for composite
sensors having high carbon black loadings, these seven analytes
were presented in random order 200 times each to the detector array
during a single run over 4 days, at a partial pressure in air such
that P/P0 ) 0.0050, whereP is the partial pressure andP0 is the
vapor pressure of the analyte at room temperature. In a separate
run to evaluate the concentration dependence of the sensor response,
concentrations ofn-hexane and ethanol were varied at 10 different
values ofP/P0 within the range 0.002< P/P0 < 0.07, with five
exposures to each analyte/concentration combination, in randomized
order. Each exposure consisted of 100 s of laboratory air, followed
by 100 s of analyte and by 100 s of laboratory air, at a flow rate
of 5 L min-1.

An identical data run was used to evaluate the performance of
the sensors with low carbon black loadings, with the seven analytes
presented in random order 200 times each to the detector array
during a single run over 4 days. Additionally, subsequent runs which
were identical in their randomized analyte exposure order, exposure
times, and protocols were performed to assess the long-term drift
and stability of the sensors. The second run was initiated 2 days
after the completion of the first run; the third run was initiated 2
days after the completion of the second run, and the fourth run
was initiated 6 months after the completion of the third run. In
these experiments, analytes were presented to the detector array at
concentrations corresponding toP/P0 ) 0.0050.

D. Data Processing.The response of a sensor to a particular
analyte was expressed as∆Rmax/Rb, where Rb is the baseline
resistance of the sensor and∆Rmax is the steady-state resistance
change upon exposing the sensor to analyte (after correcting for
baseline drift). The value of∆Rmax was obtained fromRmax - Rb,
whereRmax is the maximum resistance value observed during the
analyte exposure, calculated by averaging over at least three
consecutive resistance measurements (in most cases four or five)
in the steady-state portion of the response signal. The value ofRb

was calculated by averaging over five resistance measurements
before the exposure was initiated. The ratiometric quantity∆Rmax/
Rb was used as the response descriptor because it has been shown
in similar detector films to be both relatively insensitive to the vapor
introduction technique and to increase linearly with analyte
concentration.23,35All data processing was performed using Matlab
(The Mathworks, Natick, MA).

E. Quantification of Classification Performance.For quanti-
fication of the analyte classification performance, the responses from
each of the data sets were sum-normalized. This process was
performed using eq 1:

whereSij refers to the∆Rmax/Rb sensor response signal of thejth
detector (out ofn total detectors) to theith analyte exposure, and
S′ij represents the sum-normalized analogue ofSij. For sensors
exhibiting a response that is linear with analyte concentration, this

(39) Koscho, M. E.; Grubbs, R. H.; Lewis, N. S.Anal. Chem2002, 74,
1307.

Table 1. Sorption Material Used in Carbon Black-Nonpolymeric
Composite Sensors for (a) 75% and (b) 25% (by Mass) Carbon

Black Loadingsa and (c) Sorption Material Used in Carbon
Black-Polymer Composite Sensors,b As Reported Previously43

amount (mg)

sensor sorption material sorption plasticizer CB

(a) 75% Carbon Black Loading
A1 propyl gallate 50 0 150
A2 quinacrine dihydrochloride dihydrate 50 0 150
A3 lauric acid/dioctyl phthalate 35 15 150
A4 tetracosane/dioctyl phthalate 35 15 150
A5 tetracosanoic acid 50 0 150
A6 quinacrine dihydrochloride

dihydrate/dioctyl phthalate
35 15 150

A7 tetracosanoic acid/dioctyl phthalate 35 15 150

(b) 20-25% Carbon Black Loading
B1 tetraoctylammonium

bromide/dioctyl phthalate
80 80 20

B2 lauric acid/dioctyl phthalate 80 70 20
B3 tetracosanoic acid 80 0 30
B4 tetracosanoic acid/dioctyl phthalate 80 50 20
B5 tetracosanoic acid/dioctyl phthalate 100 60 40
B6 propyl gallate 160 0 40
B7 1,2,5,6,9,10-hexabromocyclo-

dodecane/dioctyl phthalate
100 60 40

B8 quinacrine dihydrochloride dihydrate 160 0 40
B9 quinacrine dihydrochloride

dihydrate/dioctyl phthalate
100 60 40

(c) Previously Reported Sorption Materials

sensor sorption material

C1 polycaprolactone (PCL)
C2 poly(ethylene-co-vinyl acetate) (PEVA)
C3 poly(ethylene oxide) (PEO)
C4 poly(ethylene glycol)
C5 poly(methyl vinyl ether-co-maleic anhydride)
C6 poly(4-vinyl phenol)
C7 polycarbonate
C8 poly(vinyl butyral)
C9 polystyrene (PVS)

a Plasticizer denotes the amount of dioctyl phthalate. A total of 20 mL
of either THF or toluene was added to sorption and plasticizer materials,
followed by addition of carbon black (CB) and by sonication for>30 min.
b Fabricated with 40% of the stated sorption material, 40% di(ethylene
glycol) dibenzoate (plasticizer), and 20% (by wt) of carbon black.

S′ij )
Sij

∑
j)1

n

Sij

(1)
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normalization procedure produces a unit vector inn-dimensional
space defining a location in this space characteristic of each test
analyte, regardless of analyte concentration.

The Fisher linear discriminant (FLD) algorithm was used on sum-
normalized sensor response data to analyze the classification
performance of the sensors. In the FLD approach, the responses of
a training set are used to calculate a vector that projects response
data onto the one-dimensional space that maximizes the separation
between two sets of data clusters.40 For normalized data (eq 1)
produced by the responses of ann-detector array, this projection
has the form

wherecj represents one of then - 1 weighting factors from the
hyperplane determined by the FLD algorithm. The value ofDi

(hereafter referred to as theD value) is a single, scalar metric that
characterizes the position, along a vector normal to the hyperplane
decision boundary, of the detector array data produced by an
individual analyte exposure. The chosen hyperplane decision
boundary is defined as the point in one-dimensional projected space
for which a data point lying on this plane has an equal probability
of belonging to either of the two data clusters.

The FLD algorithm maximizes the separation, or clustering, of
the two distinct populations ofD values that arise from a single
binary separation task. This clustering is measured by the resolution
factor (rf) characteristic of a separation task, as given in eq 3:27

Here,δ is the difference in the population means of theD values,
andσ1 andσ2 are the standard deviations of the two populations of
D values that correspond to the two analytes of the separation task.
The FLD algorithm was used to evaluate the separation between
each possible pairwise combination of analytes in the data set.

Because a supervised algorithm inherently introduces some bias
into the analysis, a train/test scheme was employed. For each pair
of analytes that comprised a single separation task, the first 100
exposures to each analyte (exposures 1-100, data set 1) were used
to generate a training set and a set of coefficients (comprising a
classification model) as described in eq 2. A decision boundary
was then developed by defining the hyperplane at which an
unknown analyte exposure would have an equal probability
(according to eq 3) of belonging to either analyte population of
the given binary separation task. All subsequent data were treated
as test data, in that the Fisher algorithm was not performed after
the training phase, and analyte identities were classified according
to their positions relative to the fixed FLD decision boundary.

The SNR of a sensor for a given exposure was calculated as

whereσbaselinerepresents the standard deviation in baseline resistance
before analyte delivery, calculated using at least five data points.

The same analytes atP/P0 ) 0.0050 have been previously
exposed to carbon black-polymer composite chemiresistors. Such
data have been analyzed in the same manner as those for the sensors
under study and are given for comparison.21,22,32,34,35Specifically,
resolution factors and SNRs were compared for both types of
sensors from previously recorded and reported data. For detection

limit determination, carbon black-polymer composite sensors were
also exposed simultaneously with carbon black-nonpolymer
composite sensors to ensure equal vapor deliveries and representa-
tive analyses.

III. Results

A. Vapor Response Characteristics and Reproduc-
ibility. Carbon black loadings of≈10, 25, 50, and 75 wt %
were investigated, and 75% loadings exhibited a higher SNR,
lower detection limit, and enhanced clustering relative to
other loadings. Thus, results on sensor films made from 75%
carbon black loadings are primarily reported herein. Ad-
ditional results are described for a 6-month stability and drift
study that was performed on sensors having various lower
carbon black loading levels. In each case, the carbon black
loading was sufficient to ensure that the chemiresistors were
above their percolation threshold, that is, in the highly
conductive state of the composite in which the films
displayed simple, ohmic resistance behavior between two
electrically conductive contacting leads. Such composites
consist of highly interconnected networks of conductive
particles in a matrix of insulating organic material, but the
structure of the organic material is difficult to elucidate
directly from scanning electron microscopy, X-ray photo-
electron spectroscopy, or other spectroscopic methods be-
cause of the high mole fraction of carbon black in the
composites.

Table 1a and Scheme 1 present information on the high
(75%) and low (20-25%) carbon black loaded sensor arrays.
The first exposure in Figure 1 shows the baseline-corrected
resistance response of a nonpolymer- and polymer-carbon
black composite sensor on exposure ton-hexane atP/P0 )
0.0050. Shown are tetracosanoic acid/dioctyl phthalate (75%
carbon black; sensor A4) and poly(ethylene-co-vinyl acetate)
(40% carbon black; sensor C2) films, which both exhibited
the highest signal and lowest noise for each of their respective
sensor array types investigated. The resistance of all films
increased when analyte vapor was present and rapidly (i.e.,
within seconds) returned to its original baseline resistance(40) Fisher, R. A.Ann. Eugenic1936, 179.

Figure 1. Response of a tetracosanoic acid/dioctyl phthalate (75% carbon
black) composite (sensor A4) and a poly(ethylene-co-vinyl acetate) (40%
carbon black) composite (sensor C2) on exposure ton-hexane atP/P0 )
0.0050. Of all the sensors employed in this study, these two exhibited the
highest signal and lowest noise upon exposure ton-hexane. Additionally,
six exposures of the nonpolymer-carbon black composite sensor (A4) are
shown. A total of 1, 35, 44, 62, and 71 h, as well as continuous random
exposures to each of the test analytes, occurred between the first response
shown and the second, third, fourth, fifth, and sixth responses.

Di ) ∑
j)1

n-1

cjS′ij (2)

rf ) δ
(σ1

2 + σ2
2)0.5

(3)

SNR)
∆Rmax

σbaseline
(4)
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value after the vapor exposure had been discontinued.
Nonpolymer-carbon black composite sensors consistently
displayed SNRs and response magnitudes comparable to
those obtained with the well-studied polymer-carbon black
composite sensors evaluated in this work.

Figure 1 also displays the response of a representative
sensor (tetracosanoic acid/dioctyl phthalate) ton-hexane.
Sensor responses shown were at 0, 1, 35, 44, 62 and 72 h in
a run of randomized exposures to the seven test analytes.
As observed in Figure 1, in all cases, the sensor fully returned
to the same response on exposure ton-hexane atP/P0 )
0.0050, as well as returned to the same baseline resistance
on exposure to laboratory air. This was the case for the
majority of exposures (>95%); however, hysteresis did occur
randomly in a small percentage of exposures. Therefore,
sensor responses were baseline corrected, forcing sensor
readings to fully return to their initial baseline resistance;
this ensured that∆Rmax/Rb was due solely to the sensor/
analyte interaction and not due to sensor drift.

Table 2 presents the sensitivities and standard deviations
of the responses measured for the seven different carbon
black composite sensor compositions exposed to the seven
test analytes studied in this work at an activity ofP/P0 )
0.0050 in air. Sensitivities varied significantly across the
analytes tested, and a given analyte produced different
responses on different sensor films.

Different levels of variability were observed in the
response of each of the sensors. Part of this variability in
the response amplitude can be ascribed to sensor noise, which
is inherent and unique to each of the sensors, as well as to
variation in room temperature during the exposures. For
example, a 1°C change in room temperature produces a 4.5%
change in the vapor pressure ofn-hexane (the vapor pressures
of n-hexane at 20 and 21°C are 119.9 and 125.3 Torr,
respectively).41 Additionally, slight (though significant) drift
was observed for several of the sensors, though this did not

affect the ability to accurately model and predict based on
sensor array response patterns.

SNRs were calculated for each sensor on exposure to each
of the test analytes. Table 3a details the means and standard
deviations of the SNRs for each carbon black-nonpolymer
composite sensor on exposure to the various test analytes
each presented 200 times in random order atP/P0 ) 0.0050.
For comparison, Table 3b presents the SNRs of the carbon
black-polymer composite sensors on exposure to these
analytes at the same partial pressure ofP/P0 ) 0.0050. The
two sensor types exhibited similar SNR values, with different
sensors performing better in different cases.

B. Concentration Dependence of Sensor Response.
Figure 2a,b displays the responses of several typical carbon
black-nonpolymer composites as a function of the vapor
phase concentration ofn-hexane and ethanol, respectively.
For the relatively low analyte concentrations used in this
study, the sensor responses were well-described by a linear
dependence onP/P0, indicating operation above the percola-
tion threshold. This relationship has also been observed for
carbon black-polymer composite sensors operating above
the percolation threshold.35

Table 4a presents the limits of detection based on the
∆Rmax/Rb versus concentration data presented in Figure 2.
SNRs were calculated (eq 4) for each of the sensors on
exposure to hexane and ethanol at various fractions of their
vapor pressure (0.0020< P/P0 < 0.0625), and detection was
taken to be the partial pressure at which SNR) 3. Limits
of detection ranged fromP/P0 ) 0.002 toP/P0 ) 0.0075,
with most values near 0.0035 or 0.005. These thresholds were
converted to parts per million for display. For comparison,
Table 4b gives detection limits for several carbon black-
polymer composites, exposed simultaneously with optimized
carbon black-nonpolymer composite sensors to ensure a
representative comparison. The limits of detection for the
carbon black-polymer composite sensors are in accord with
values reported previously.42 The carbon black-nonpolymer

(41) Weast, R. C.CRC Handbook of Chemistry and Physics, 70th ed.; CRC
Press: Boca Raton, FL, 1989/1990. (42) Doleman, B. J.; Lewis, N. S.Sens. Actuators, B2001, 41.

Table 2. Sensor Response,∆R/Rb (×10 000), of (a) Carbon Black-Nonpolymer Composite Sensors (75% Carbon Black, Table 1a) and (b)
Carbon Black-Polymer Composite Sensors to Seven Test Analytes Presented at a Concentration ofP/P0 ) 0.0050a

sensor n-hexane ethanol ethyl acetate cyclohexane n-heptane n-octane isooctane

(a) Carbon Black-Nonpolymer Composite Sensors
A1 4.2( 0.9 6.4( 0.8 8.0( 0.7 1.7( 0.3 4.4( 1.0 6.3( 1.0 3.1( 1.3
A2 -12.5( 7.2 15.0( 2.9 2.6( -5.1 -5.1( 2.9 -14.7( 9.3 -16.6( 9.4 -21.3( 10.8
A3 21.7( 2.9 1.3( 0.2 8.3( 0.8 8.9( 0.7 25.1( 4.5 38.0( 7.4 27.4( 4.1
A4 11.9( 2.1 1.0( 0.2 4.5( 0.7 5.6( 1.6 13.2( 3.8 19.9( 6.1 15.9( 4.0
A5 18.0( 0.9 0.9( 0.3 6.1( 0.5 5.2( 0.5 23.2( 0.9 36.5( 1.4 24.2( 0.8
A6 2.4( 0.3 6.9( 1.0 2.4( 0.4 1.6( 0.2 2.2( 0.4 2.7( 0.5 2.7( 0.4
A7 18.7( 1.0 0.8( 0.2 5.8( 0.3 6.8( 1.0 23.1( 1.5 35.6( 2.6 24.8( 1.2

(b) Carbon Black-Polymer Composite Sensors
C1 3.2( 0.2 6.1( 0.2 13.3( 0.3 4.9( 0.2 2.8( 0.2 2.8( 0.1 3.3( 0.1
C2 18.2( 0.5 12.0( 0.5 48.4( 1.3 27.9( 0.6 16.6( 0.5 17.9( 0.4 19.7( 0.5
C3 4.2( 0.4 3.2( 0.4 5.8( 0.2 5.6( 0.2 4.2( 0.2 4.7( 0.2 5.2( 0.2
C4 2.1( 0.2 2.7( 0.2 12.3( 0.4 3.4( 0.2 1.7( 0.2 1.6( 0.2 1.8( 0.2
C5 20.2( 0.6 6.6( 0.3 37.8( 1.1 31.0( 1.0 18.5( 0.6 20.1( 0.5 22.4( 0.5
C6 18.7( 0.6 11.9( 0.5 49.6( 1.9 28.7( 1.1 16.9( 0.6 18.2( 0.5 20.0( 0.5
C7 14.7( 0.5 7.5( 0.3 55.3( 2.0 23.8( 0.9 12.9( 0.5 13.5( 0.4 14.5( 0.3
C8 0.6( 0.1 1.5( 0.1 5.7( 0.2 0.5( 0.1 0.5( 0.1 0.4( 0.1 0.2( 0.1
C9 6.8( 0.5 12.2( 0.5 34.6( 0.9 6.1( 0.4 5.7( 0.4 5.2( 0.3 2.3( 0.3

a The sensors were subjected to 200 exposures to each analyte selected from 1400 randomly ordered exposures to seven test analytes. Means and standard
deviations are given for each sensor (mean( standard deviation).
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composite sensors exhibited comparable detection limits
when compared to these well-studied and developed carbon
black-polymer composite sensors.

C. Sensor Specificity. Figure 3 presents the mean
responses, averaged over 200 randomly ordered exposures
to each analyte, for each of the carbon black-nonpolymer
composite films to the seven test analyte vapors atP/P0 )
0.0050. Large differences in sensitivity were observed
between the responses of a given sensor upon exposure to
the various test analytes. For example, quinacrine dihydro-
chloride dihydrate (sensor A2) displayed a strong positive
response on exposure to a prototypical polar analyte, ethanol,
while displaying a strong negative response to a prototypical
nonpolar analyte,n-hexane. This can be attributed to
insolubility of the latter compound with nonpolar solvents
resulting from dielectric constant differences and molecular
size. Additionally, a tetracosanoic acid/dioctyl phthalate-
carbon black composite (sensor A7) exhibited ann-hexane/
ethanol response ratio of 22, while a quinacrine dihydro-
chloride dihydrate/dioctyl phthalate-carbon black composite
(sensor A6) displayed ann-hexane/ethanol response ratio of
0.3. For comparison, of the polymer-carbon black composite
sensors investigated, the greatest response ratio of ethanol

to n-hexane was produced by poly(ethylene-co-vinyl acetate)
(sensor C2), with a ratio of 4, and the smallest ratio was
achieved by poly(vinyl butyral) (sensor C8), with a ratio of
0.4 (Table 2b). Clearly, the use of organic molecular sorption
phases having a high density of hydrophilic or hydro-
phobic functional groups can produce sensor arrays that
display large discrimination power between differing test
pairs of analytes.

Table 3. SNRs of (a) Carbon Black-Nonpolymer Composite Sensors (75% Carbon Black, Table 1a) and (b) Carbon Black-Polymer Composite
Sensors (Table 1c) to Seven Test Analytes Presented at a Concentration ofP/P0 ) 0.0050a

sensor n-hexane ethanol ethyl acetate cyclohexane n-heptane n-octane isooctane

(a) Carbon Black-Nonpolymer Composite Sensors
A1 90 ( 62 142( 89 99( 49 45( 31 73( 41 65( 31 38( 32
A2 -136( 109 109( 65 25( 22 -52 ( 45 -151( 145 -97 ( 79 -230( 172
A3 152( 62 16( 7 81( 33 86( 33 150( 41 164( 36 155( 46
A4 100( 49 13( 6 46( 19 54( 30 97( 51 131( 44 101( 40
A5 55 ( 19 5( 4 25( 14 22( 15 64( 23 73( 18 75( 36
A6 25 ( 10 68( 34 24( 11 18( 8 23( 10 27( 10 29( 13
A7 99 ( 26 14( 8 61( 27 82( 38 98( 23 90( 17 112( 24

(b) Carbon Black-Polymer Composite Sensors
C1 102( 40 102( 40 505( 190 215( 81 134( 54 138( 46 143( 58
C2 465( 211 211( 102 763( 187 809( 276 586( 220 636( 240 746( 313
C3 32( 12 30( 10 107( 45 61( 22 39( 14 43( 16 56( 23
C4 29( 12 62( 23 190( 87 60( 22 32( 11 35( 14 42( 20
C5 104( 45 53( 21 193( 76 182( 75 133( 51 146( 56 198( 84
C6 46( 21 311( 124 585( 278 68( 32 54( 20 46( 18 38( 15
C7 238( 77 146( 57 1355( 654 526( 217 295( 181 304( 111 320( 123
C8 30( 12 87( 38 206( 80 24( 8 34( 15 33( 13 15( 8
C9 65( 30 54( 23 326( 111 49( 13 77( 32 70( 22 29( 11

a The sensors were subjected to 200 randomly ordered exposures to each of the seven test analytes. Means and standard deviations are given for each
sensor (mean( standard deviation).

Table 4. Approximate Limits of Detection in PPM of (a) Carbon
Black-Nonpolymer Composite Sensors (Table 1a) and (b) Carbon
Black-Polymer Composite Sensors (Table 1c) for the Detection of

n-Hexane and Ethanola

(a) Carbon Black-Nonpolymer Composite Sensors

sensor

analyte A1 A2 A3 A4 A5 A6 A7

n-hexane 110 100 100 100 100 60 140
ethanol 50 50 50 40 40 40 40

(b) Carbon Black-Polymer Composite Sensors

sensor

analyte PVS (C8) PEVA (C2) PCL (C1) PEO (C3)

n-hexane 120 140 160 140
ethanol 70 50 80 50

a The limit of detection is defined as the vapor concentration in PPM at
which SNR) 3.

Figure 2. Plot of several nonpolymer-carbon black composite sensor
responses (75% carbon black),∆Rmax/Rb, to (a) n-hexane and (b) ethanol
at various concentrations.
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D. Sensor Array Response to Various Analytes.Prin-
cipal components analysis27 was used to visualize the
differences in normalized autoscaled response patterns of a
seven element carbon black composite sensor array (Table
1a) exposed randomly 200 times to each of the seven test
analytes atP/P0 ) 0.0050. The points plotted in Figure 4
represent unique response patterns of the sensor array to each
of the analytes presented. The response vectors are displayed
with respect to the first three principal components of the
data set, which contained 96% of the variance in detector
response. Several major clusters are observed: ethanol, ethyl
acetate, and cyclohexane, as well as a clustering of the
remaining alkanes. This remaining cluster of alkanes also
displays a distinct pattern, which can also be seen in Figure
4. Even at the relatively low analyte concentrations used in
this study, the sensor array readily distinguished extremely
well between polar and nonpolar analytes, as well as
providing reasonable clustering among very similar polar
analytes.

The classification performance of the sensor array was
quantified by use of the FLD algorithm for pairwise analyte
classification. The figure of merit to determine the effective-
ness of the FLD model is the resolution factor, rf (eq 3),

which quantifies the statistical separation between the two
data clusters of interest. The first 100 normalized exposures
to each analyte were used as a training set, and the remaining
100 normalized exposures to each analyte, from the same
set of data collection, were used as a test set. This train/test
scheme was adopted to avoid bias resulting from possible
overfitting of data.

Table 5a presents resolution factors for the carbon black-
nonpolymer composite sensor array (sensors A1-A7). For
comparison, Table 5b presents resolution factors for an array
of carbon black-polymer composite sensors consisting of
the nine polymers (sensors C1-C9) given in Table 1c. This
nine-sensor carbon black-polymer composite array was
chosen from a nonexhaustive search seeking the best nine-
sensor array that maximized the resolution factors for the
worst-resolved pairs (>15 nine-sensor array combinations
were investigated, and the “best” sensors based on experi-
ence, polycaprolactone, poly(ethylene-co-vinyl acetate), and
poly(ethylene oxide), were always included). In terms of the
ability to resolve various analytes, the nonpolymeric com-
posite sensor array performed highly favorably relative to
the well-developed and well-studied polymer-based sensor
array, with significant increases in resolution in many
previously difficult classification tasks. For example, in
classifyingn-hexane from cyclohexane,n-heptane,n-octane,
or isooctane, resolution factors of 2.5, 1.2, 1.7, and 3.5,
respectively, were observed for the polymer composite-based
sensor array. The use of a carbon black-nonpolymer
composite sensor array increased these resolution factors to
6.1, 6.4, 9.9, and 6.2, respectively. A resolution factor of 1
implies 68% correct classification, 2 implies 95.5% correct
classification, and 3 implies 99.7% correct classification. This
new sensor type thus takes previous classification tasks which
perform at levels slightly above chance, and provides the
ability to consistently and confidently correctly classify such
analytes.

E. Stability and Drift. A FLD model for each binary
separation task, consisting of projection weights and a

Figure 3. Three-dimensional pattern depicting the average carbon black-
nonpolymer sensor responses (Table 1a) to the seven test analytes at a
concentration ofP/P0 ) 0.0050 in air. Standard deviations of the sensor
responses are given in Table 2a.

Figure 4. Principal components analysis showing principal components
1, 2, and 3 from normalized sensor array response data. For visualization
ease, only the first 50 exposures to each of the test analytes are analyzed
are shown. The valves in parenthesis are the percentage of the total variance
in each principal component.

Table 5. Resolution Factors Displaying the Ability of the (a) Carbon
Black-Nonpolymer Composite Sensor Array (Table 1a, Sensors

A1-A7) and (b) Carbon Black-Polymer Composite Sensor Array
(Table 1c, Sensors C1-C9; from Raw Data Previously Reported43)
To Distinguish between Test Analytes Presented atP/P0 ) 0.0050a

analyte
n-

hexane ethanol
ethyl

acetate
cyclo-
hexane

n-
heptane

n-
octane

iso-
octane

(a) Carbon Black-Nonpolymer Composite Sensor Array
n-hexane N/A 44.6 13.3 6.1 6.4 9.9 6.2
ethanol N/A 27 36.5 47.5 51.7 50
ethyl acetate N/A 14.3 15.4 20.6 14.5
cyclohexane N/A 8.2 10.1 6.9
n-heptane N/A 4.2 3.7
n-octane N/A 4.8
isooctane N/A

(b) Carbon Black-Polymer Composite Sensor Array
n-hexane N/A 10.73 6.13 2.47 1.23 1.65 3.49
ethanol N/A 24.2 29.1 23.28 25.23 25.85
ethyl acetate N/A 30.42 15.51 27.09 32.09
cyclohexane N/A 3.94 4.43 10.23
n-heptane N/A 1.67 6.81
n-octane N/A 6.73
isooctane N/A

a In each case, for a given separation task, a FLD model was trained on
exposures 1-100, and exposures 101-200 were then tested using the model.
Reported values are for exposures 101-200.
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decision boundary, was constructed from sensor responses
in the first data set of the first 100 exposures to each analyte.
This model was then applied to 700 subsequent exposures
spread over four sets that spanned six months of data
collection. The exposures for each binary separation task
were then projected onto the FLD vector characteristic for
the given separation task, placing data into the one-
dimensional space which initially maximized the resolution
factor between the two analytes of interest. These analyte
projections were compared to the originally modeled decision
boundary for the given binary separation and thereby
assigned to be in one of the two analyte clusters. The
performance factor is defined as the number of correct
classifications divided by the number of classification
attempts. Table 6 lists the performance factors for all
combinations of binary separations for each set of data
collection.

Binary separation performances were comparable through-
out the first three data sets, which spanned 1 month.
However, the fourth data set, collected 6 months after the
initially trained model, yielded extremely low classification
performance in many situations. In terms of the Fisher model,
two possible explanations of this performance loss are (1)
that a new dimension for each binary analyte separation
captures maximum resolution between analyte clusters, so

that a new model, with different projection weights for each
analyte, and a new decision boundary need to be created, or
(2) that the same model approximately captures maximum
resolution between analyte clusters, but the clusters have
drifted with respect to the original decision boundary. In the
latter case, a calibration scheme has proven capable of
restoring the classification performance of carbon black-
polymeric composite sensors.43 To compensate for this type
of drift, sensor responses were adjusted by a multiplicative
calibration factor:

whereSa,t andSc,t indicate the∆R/Rb response signals for an
analyte a and calibrant c, respectively, at some timet after
training, andSa,0 andSc,0 are the initial responses to analyte
a and calibrant c.43

Table 7 presents the classification performance for each
binary separation, using each analyte as a calibrant, when
the initial model (based on exposures 1-100, data set 1)
was used on the final data set (200 exposures, recorded 6
months after the initial data set). The first three exposures
from the final data set were used to calibrate the model
according to eq 5 and were then followed by 47 test
exposures. This cycle of calibrate/test was repeated three
additional times, accounting for all 200 exposures of the final
data set. For clarity, performances are given for binary
separations both without the use of calibration and for the
calibrant that proved most effective; cases where reasonable
performances are attained are shown in bold text. Of the 21
combinations of binary analyte separations, 17 yielded
performance scores ofg0.90.

For binary separations with low performance values, even
after the calibration scheme was employed, the sensor array
was still capable of resolving between analyte pairs in the
data set; however, a rigorous training period was again
required to construct a new model for effective analyte
separation. For example, the binary classification ofn-hexane
and n-heptane yielded a performance of 0.49 and had a
resolution factor of 0.02 when the initial model was applied
to the final data set. However, if the first 100 exposures of
data set 4 were used to construct a new model, a resolution
factor of 1.5 and a classification performance of 0.88 were
achieved for the final 100 exposures of data set 4. These
values are comparable to those obtained from training on
the first 100 exposures and testing on the final 100 exposures
of data set 1, with a resolution factor and performance of
1.5 and 0.88, respectively (Tables 5 and 6). Thus, no sensor
performance was lost, but the initial model describing the
sensor response behavior changed significantly, resulting in
the loss of predictive ability.

Figure 5a shows projections of 700 exposures, spread over
four sets of data collection, for a FLD model constructed
from the first 100 exposures in data set 1. Figure 5b shows
these same projections, when a calibration scheme was
adopted in which three exposures were first used as calibrant
runs, followed by 47 test exposures, with the process repeated

(43) Sisk, B. C.; Lewis, N. S.Sens. Actuators, B2005, 104, 249.

Table 6. Performance Values of a Low Mass Fraction Carbon
Black-Nonpolymer Composite Sensor Array (Table 1b, Sensors

B1-B9) in Various Binary Separation Tasksa

analyte
n-

hexane ethanol
ethyl

acetate
cyclo-
hexane

n-
heptane

n-
octane

iso-
octane

(a) Data Set 1
n-hexane N/A 1 1 1 0.82 0.95 1
ethanol N/A 1 1 1 1 1
ethyl acetate N/A 1 1 1 1
cyclohexane N/A 1 1 0.92
n-heptane N/A 0.84 1
n-octane N/A 1
isooctane N/A

(b) Data Set 2
n-hexane N/A 1 1 1 0.73 0.79 1
ethanol N/A 1 1 1 1 1
ethyl acetate N/A 1 1 1 1
cyclohexane N/A 1 1 0.56
n-heptane N/A 0.59 1
n-octane N/A 1
isooctane N/A

(c) Data Set 3
n-hexane N/A 1 1 0.99 0.66 0.79 1
ethanol N/A 1 1 1 1 1
ethyl acetate N/A 1 1 0.99 1
cyclohexane N/A 0.99 0.99 0.54
n-heptane N/A 0.64 1
n-octane N/A 1
isooctane N/A

(d) Data Set 4
n-hexane N/A 0.94 0.98 0.51 0.51 0.5 0.59
ethanol N/A 1 0.88 0.95 0.91 0.98
ethyl acetate N/A 0.99 0.98 0.99 0.9
cyclohexane N/A 0.52 0.51 0.5
n-heptane N/A 0.5 0.59
n-octane N/A 0.62
isooctane N/A

a Trained on the first 100 exposures to (a) data set 1 and applied to various
sets of data collection, with various times between each set of data collection.
(b) Data set 2, (c) data set 3, and (d) data set 4 were collected 2 days, 6
days, and 6 months, respectively, after the initial data set that trained the
Fisher model used for classification.

Sa,t ) Sc,t

Sa,0

Sc,0
(5)
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throughout the remaining 700 exposures of the data set. The
projected dimension clearly maintained a reasonable level
of separation between the two analytes (although this is no
longer the optimal one-dimensional space for resolution);
however, the analyte clusters drifted relative to the decision
boundary. The calibration process shifted these projections
back to the decision boundary, and classification performance
was restored.

IV. Discussion

The vapor sensing properties of the carbon black-
nonpolymeric composite sensors and sensor arrays compare
favorably in all aspects to the well-investigated carbon
black-polymer composite sensing films. The nonpolymeric
sensors provide improved analyte clustering and greater
analyte resolution/classification capability, as well as a high
level of signal-to-noise and low detection limit thresholds.

A measure of the performance of a sensor array is
the resolution factor, which is a measure of the ability of a
given sensor array to distinguish between and discriminate

among various analytes. In this respect, the carbon black-
nonpolymer composite sensors surpass the performance of
previous sensor classes, including the well-studied carbon
black-polymer composite sensors (Table 5a,b). Significant
improvements were observed, in particular, in the ability of
the sensor array to distinguish between various types of
alkanes, namely,n-hexane, cyclohexane,n-heptane,n-octane,
and isooctane.

The nonpolymeric sensors are well-suited to detect and
exploit subtle differences between analytes, owing to a higher
density and random arrangement of functional groups, as well
as an enhanced SNR for analyte detection. In typical carbon
black-polymer composite sensors, functional groups are
present at certain repeat units along the polymer backbone,
and this structural motif places a limit on the functional group
density as well as a limit on possible analyte-polymer
interactions, due to steric hindrance. With the carbon black-
nonpolymer composite sensor array, a higher functional
group density, as well as random packing, can provide more
specific sensor-analyte interactions which are able to better

Table 7. Performance Values of Carbon Black-Nonpolymer Composite Sensors (B1-B9) when a FLD Model Was Trained on 100 Exposures
and Tested on 200 Exposures 6 Months Later, with the Use of Calibrationa

calibrant used calibrant comparison

classification task n-hexane ethanol ethyl acetate cyclohexanen-heptane n-octane isooctane no calibrant best calibrant

n-hexane/ethanol 0.58 0.98 1 0.82 0.86 0.96 0.95 0.94 1
n-hexane/ethyl acetate 0.57 0.96 0.98 0.7 0.85 0.73 0.84 0.98 0.98
n-hexane/cyclohexane 0.86 0.52 0.51 0.83 0.88 0.9 0.74 0.51 0.9
n-hexane/n-heptane 0.5 0.56 0.55 0.5 0.53 0.5 0.49 0.51 0.56
n-hexane/n-octane 0.49 0.57 0.56 0.51 0.53 0.55 0.51 0.5 0.57
n-hexane/isooctane 0.91 0.59 0.6 0.88 0.95 0.97 0.86 0.59 0.97
ethanol/ethyl acetate 0.51 1 1 0.75 0.84 0.86 0.76 1 1
ethanol/cyclohexane 0.58 0.95 0.99 0.83 0.85 0.98 0.95 0.88 0.99
ethanol/n-heptane 0.59 0.9 0.99 0.83 0.86 0.98 0.97 0.95 0.99
ethanol/n-octane 0.57 0.89 0.99 0.84 0.85 0.97 0.96 0.91 0.99
ethanol/isooctane 0.57 0.99 1 0.85 0.86 0.99 0.98 0.98 1
ethyl acetate/cyclohexane 0.57 0.86 0.98 0.73 0.84 0.73 0.83 0.99 0.98
ethyl acetate/n-heptane 0.58 0.76 0.97 0.71 0.85 0.74 0.85 0.98 0.97
ethyl acetate/n-octane 0.57 0.97 0.99 0.72 0.85 0.74 0.85 0.99 0.99
ethyl acetate/isooctane 0.53 0.53 0.89 0.72 0.81 0.72 0.82 0.9 0.89
cyclohexane/n-heptane 0.86 0.7 0.68 0.82 0.86 0.91 0.78 0.52 0.91
cyclohexane/n-octane 0.9 0.91 0.79 0.82 0.91 0.95 0.83 0.51 0.95
cyclohexane/isooctane 0.48 0.5 0.5 0.58 0.48 0.54 0.57 0.5 0.58
n-heptane/n-octane 0.49 0.52 0.51 0.5 0.51 0.54 0.51 0.5 0.54
n-heptane/isooctane 0.89 0.89 0.8 0.88 0.93 0.97 0.9 0.59 0.97
n-octane/isooctane 0.89 0.9 0.88 0.87 0.91 0.96 0.91 0.62 0.96

a Scenarios for the best calibrant and for the use of no calibrant are listed for direct comparison; binary separation tasks capable of high performances with
a 6 month period between the training and the test phases are shown in bold.

Figure 5. “Waterfall” plots detailing drift ofD values (the single dimensional projection of the sensor array response which initially maximized the resolution
factor for the classification task at hand) vs exposure number for then-hexane/isooctane binary separation task. The first 100 exposures of data were used
to train the model. A decision boundary (solid line) based on these first 100 exposures is shown. Results are shown for (a) no calibration and for (b)
calibration usingn-octane.
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capture subtle differences in analyte properties. High SNRs
provide the means of detecting and describing these subtle
differences, which would likely be lost in the noise of other
sensor types. These combinations allow carbon black-
nonpolymer composite sensors to more precisely define the
position of extremely similar analytes in sensor space, which
translates into enhanced clustering and resolution ability.

The carbon black-nonpolymer composite sensors also
exhibited lower detection limits relative to typical carbon
black-polymer composite sensors (Table 4a,b). Thus, carbon
black-nonpolymer composite sensors are more suitable for
trace vapor detection, which broadens the potential areas of
application of these sensors.

The low mass fraction carbon black-nonpolymer sensor
array showed relatively little long-term drift over extended
time periods. Specifically, for most binary separation tasks,
the nonpolymeric composite sensors provided good analyte
classification levels for at least 6 months after an initial
training phase. When the sensors were used 6 months after
an initial training period, 11 of the 21 binary separation tasks
were performed with correct classification rates of>90%
(Tables 6 and 7). When a simple calibration scheme, which
involved only 3 calibration exposures per 50 exposures, was
performed, the number of binary separation tasks with>90%
correct classification after six months increased to 17. Those
cases where performance was unacceptable even after
calibration are the same as those reported for carbon black-
polymer composite sensors, for example,n-hexane versus
n-heptane orn-heptane versusn-octane.43

Plasticizers such as dioctyl phthalate (a viscous liquid)
have been added to polymers to lower their glass transition
temperature and decrease the sensor response time to various
vapors. The sensors studied herein showed response times
that were rapid, both with and without the presence of dioctyl
phthalate or similar plasticizers (Figure 1). This rapid time
response is characteristic of the use of low molecular weight
nonpolymeric organic molecules as the sorbent phase.

For many diseases, specific volatile organic compounds
such as amines and fatty acids are found in the breath and

urine of infected individuals. For bio-sensing applications,
it is desirable to have sensors with a high sensitivity to these
species. A key feature of using molecularly based sorbent
phases is the ability to tune the sensitivity toward different
classes of chemicals. The ratios of the∆Rmax/Rb responses
of two carbon black-nonpolymer composite sensors, tetra-
cosanoic acid/dioctyl phthalate and quinacrine dihydrochlo-
ride dihydrate/dioctyl phthalate, on exposure ton-hexane and
to ethanol, were 22 and 0.3, respectively. Additionally, the
sensor consisting of pure quinacrine dihydrochloride dihy-
drate exhibited a strong positive response on exposure to
polar analytes and a strong negative response on exposure
to nonpolar analytes. Such large differences for various other
analytes could likely be produced by further development
of this class of sensors.

V. Conclusions

Composites made from homogeneous or blended organic
molecules and carbon black showed fast response times, good
reversibility, high stability, and an excellent ability to
discriminate and classify between both similar and dissimilar
types of analytes. This type of composite sensor offers a
higher density of functional groups, as well as a random
orientation and random exposure of these functional groups
within the sensing material due to the lack of a restricting
polymer backbone. A seven-sensor array robustly resolved
even extremely similar test analytes, such asn-hexane and
n-heptane. Excellent SNRs can be achieved with these carbon
black-nonpolymer composite sensors, which provide com-
parable limits of detection relative to the evaluated carbon
black-polymer composite sensors.
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